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In the chemical ,  pe t ro l eum refining, and food industr ies ,  and in medicine,  fluids with s t ruc tu ra l  v i s -  
cosity,  defined by the rheological  curve  shown in Fig. 1., a re  widely used. In [1] a method is  p roposed  fo r  
descr ib ing  the theological  p r o p e r t i e s  of such media  and the app rop r i a t enes s  is indicated of defining the c lass  
of these  fluids by a l inea r  fluidity law in the region of s t r e s s e s  close to ~'l- 

In p r ac t i ce  there  can a lso  occur  flows of these fluids in the region of s t r e s s e s  c lose  to ~'2, when a g rad-  
ual  t rans i t ion  to motion of the med ium with the l a rge s t  p rac t i ca l  constant  fluidity ~2 is observed.  Thus, it is 
to be expected that  the flow of blood in the blood s t r e a m  is  s i m i l a r  in man  and an imals  as the p r e s s u r e  and 
o ther  pathological  s ta tes  a r e  reduced  [2]. 

1. Let T2 denote the value of the shear  s t r e s s  such that when ~- >~'2 the motion of the medium can be 
a s sumed  to have constant  fluidity ~2. We approx imate  the pa r t  of the theologica l  curve  nea r  T2 by a loga-  
r i thmic  function, the inverse  of the exponential  re la t ion  p roposed  in [1] 

where  ~-, and ~0, a re  nondimensional  v a r i a b l e s  

"~*  -- %2 -- "~I ' ( ~ *  - -  0 '~'2 - -  "~1 

(1.1) 

(0 is  a m e a s u r e  of the s t ruc tu ra l  s tabil i ty of the fluid), which sa t i s fy  (1.1) when 7=72. The behav io r  of these 
va r i ab l e s  as 7"*~-1 can be ignored, s ince the point of view proposed  here  r e f e r s  to the region of 7 .  c lose to 
unity. 

F o r  s t ruc tu red  fluids with l inea r  fluidity law in the region of ~- close to 72 we obtain a s imple  theolog-  
ical  equation ~0 = ~ 2 - 0  (T2--T), which contains va r i ab l e s  defining the uppe r  pa r t  of the flow curve  under  con- 
s idera t ion.  

2. Consider  the l a m i n a r  i so the rma l  flow of the fluid being studied with s t ruc tu ra l  v i scos i ty  in a c i r -  
cu lar  cyl indr ica l  channel of radius  R with rigid walls .  Such a flow can be observed,  fo r  example ,  in the m o -  
tion of the blood in v e s s e l s  of constant  ape r tu re  (sc lerot ic  vesse l s ) .  

P roceed ing  as  in [1] we obtain, us ing (1.1), an equation fo r  the veloci ty  prof i le  of the flow of a s t r u c -  
tured  fluid 

and the mean  s t r e a m  veloci ty 

~ ]  
-~ - -  o A 

where ,r e is the shea r  s t r e s s  a t  the channel wall  and $ ~,  -r e '  and r e "  a r e  defined by the equations 

r 8 
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Introducing nondimensional  va r i ab l e s  by analogy with ~ ,  and ~-,, 

A ~  = ~Vc,, "-- ,r c, , A'~ - -  .Vc. __ ~c~  

(~k is the apparen t  fluidity of the medium),  on the ba s i s  of the l as t  equation we r each  the conclusion that A~ 
is  a l inea r  function of in AT. F i gu re s  2 and 3 show the exper imenta l  r e su l t s  of the author  f r o m  the inves t iga-  
tion of the flow of blood in s tee l  pipes .  In these exper imen t s  the fluid flows through s t ra ight  horizontal  cyl in-  
dr ica l  pipes of va r ious  d i a m e t e r s  (3-7 re.m) and lengths under  the act ion of the p r e s s u r e  due to the p r e s s u r e  
tank in which the level  is kept constant.  By l a te ra l  spurs ,  m a n o m e t e r s  a r e  connected to these pipes  to m e a -  
sure  the p r e s s u r e  di f ference between the ends of the sect ion under  invest igat ion.  The p r e s s u r e  drop is con- 
t ro l led  by a tap beyond the exper imen ta l  sect ion at the open end of the sys tem.  The fluid flow ra te  pe r  s ec -  
ond was m e a s u r e d  in the usual  way. The exper imen ta l  appara tus  ensur ing l a m i n a r  flow with a fully deve l -  
oped veloci ty  prof i le  was  tes ted  with water .  

The s t ra igh t  l ines in Fig. 4 were  obtained for  blood of var ious  concentra t ions  f r o m  exper imen ta l  r e -  
sults.  F igu re s  5 and 6 show expe r imen ta l  r e su l t s  f r o m  the flows of other  s t ruc tu red  fluids: bi tumen and a 
solution of r ubbe r  and toluene [1]. F igu re s  2-6 show that the expe r imen ta l  r e su l t s  (circles) lie on s t ra ight  
l ines.  

3. We introduce the following v a r i a b l e s  which define the hydraulic r e s i s t ance  of the mot ion of a fluid 
with s t ruc tu red  viscosi ty:  

8 (~  -- v ' )  8 (v N -- v') 
;% = P <w> ~ ' ~N --  p <w> ~ 
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where X is the hydraulic res is tance  coefficient of the flow of a 
s t ructured fluid at some average velocity (r  and XN is the hy- 
draulic res is tance  coefficient fo r  a Newtonian fluid of fluidity ~2 
at the same flow velocity; TN is the shear  s t r e ss  at the channel 
wall at which the average flow velocity of a Newtonian fluid with 
fluidity ~2 is (r We note that fo r  the region of shear  s t r e s s  
under consideration, when we can neglect Tc r, the above defini- 
tions of X and XN coincide with the usual definitions. 

We charac te r ize  the magnitude of the additional hydraulic losses  due to the departure  of the behavior 
of a fluid with s t ruc tured  v iscos i ty  f rom the Newtonian in ~-<~'2 by the relat ive res is tance  coefficient which 
is defined by the equation 

~, = A,% N 

If the Reynolds number for  a fluid with variable viscosi ty  is defined as in [1], Re =2p (w) R~02, we 
note that for  given choice of A, X and XN are  compared at the same Reynolds number.  

It follows f rom the definition of the relative hydraulic res is tance  coefficient that 

~, Tc . ~ t 
A _ - -  " (3.1) 

;~N -- "rN -- "%' 

We can define TN--~-c r f rom the condition that the corresponding average velocit ies are  equal 

~/4~ ~t~ ('~N - -  "%9 = ~h% R (z - -  .~ ') [1 + 4/5~ (~" --  T') ln  Az] 

Thus we have 

*N -- ~ '  = (~ -- ~')  [ l + %~ (z~" -- z/) in A~] (3.2) 

It follows f rom this equation that as the shear  s t r e s s  increases ,  1-N-~ c dec reases  and is zero  when 
~" = ~'c", at which value the relat ive hydraulic res is tance  coefficient A becomes  unity. 

Substituting (3.1) in (3.2) and introducing the concept of the relative hydraulic conductivity, ~ = l /A ,  we 
obtain 

= 1 + 4/~(~ (vc"  __ vc, ) In  A* (3.3) 

Thus it follows that for  a s t ruc tured  fluid there is a relation, s imi la r  to (1.1), 

between the relat ive hydraulic conductivity 

and the nondimensional s t r e s s  AT. 

A~ = lnAT 

A~= b.8~ z . '~T  c' 

The relat ive hydraulic conductivity coefficient ~ makes it possible for  us to define the flow pa rame te r s  
for  a fluid with s t ructured viscosi ty  by calculating the corresponding quantities for  Newtonian flow with con- 
stant fluidity q~2 equal to the la rges t  value of the fluidity for  the s t ructured medium under considerat ion for 
given p res su re  gradient 

(~ ~ ~ ,  ( w )  ~ ( v )  ~, Re  = Re N 

We use this equation to obtain an expression for the Reynolds number  in t e r m s  of the hydraulic r e s i s t -  
ance coefficient 

Re  = Re  N ~ ~ I/2PR~2~T o = a ~ r  

Substituting this in (3.3), we obtain the corresponding res is tance  law (for ~'c' ~ 0) 

I / A = A In  Re  A + B (3.4) 

whe re 

A = * / . ~ z c " ,  B = i - - A  l n a % "  
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Exper imenta l  resu l t s  on the motion of blood in c i r cu la r  cyl indr ical  channels a re  compared with Eq. 
(3.4) in Fig. 7. The discontinuity in the s t ra ight  line cor responds  to the establ ishment  of fluid flow condi- 
tions at constant fluidity. 

The author wishes to thank K. D. Voskresenski i  and E. E. Kenig for  direct ion and help with the paper .  
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