PROBLEM OF THE FLOW AND HYDRAULIC RESISTANCE
OF A FLUID OF VARIABLE VISCOSITY

A. V. Kupavtsev UDC 532.54

In the chemical, petroleum refining, and food industries, and in medicine, fluids with structural vis-
cosity, defined by the rheological curve shown in Fig. 1., are widely used. In [1] a method is proposed for
describing the rheological properties of such media and the appropriateness is indicated of definingthe class
of these fluids by a linear fluidity law in the region of stresses close to 74.

In practice there can also occur flows of these fluids in the region of stresses close to 19, when a grad-
ual transition to motion of the medium with the largest practical constant fluidity ¢, is observed. Thus, itis
to be expected that the flow of blood in the blood stream is similar in man and animals as the pressure and
other pathological states are reduced [2],

1. Let 7, denote the value of the shear stress such that when 1 >r, the motion of the medium can be
assumed to have constant fluidity ¢,. We approximate the part of the rheological curve near 7, by a loga-
rithmic function, the inverse of the exponential relation proposed in [1]

q>*=0, T 2> Ty, (P*:hl‘r*v T<T2 (1.1)

where 7, and ¢, are nondimensional variables
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(6 is a measure of the structural stability of the fluid), which satisfy (1.1) when r=1,. The behavior of these
variables as T —7; can be ignored, since the point of view proposed here refers to the region of 7, close to
unity.

For structured fluids with linear fluidity law in the region of + close to 7y we obtain a simple rheolog-
ical equation ¢ = @9— @ (13~ 1), Which contains variables defining the upper part of the flow curve under con-
sideration.

2. Consgider the laminar isothermal flow of the fluid being studied with structural viscosity in a cir-
cular cylindrical channel of radius R with rigid walls. Such a flow can be observed, for example, in the mo-
tion of the blood in vessels of constant aperture (sclerotic vessels).

Proceeding as in [1] we obtain, using (1.1), an equation for the velocity profile of the flow of a struc-
tured fluid

’
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and the mean stream velocity
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where 7. is the shear stress at the channel wall and &, 4, 7,' and 7" are defined by the equations

r 0
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Introducing nondimensional variables by analogy with ¢, and 1,

'
PP Ar Te %
" 7 == " __ 7
‘Ec — T, Tc Tc

Agp =

(oK is the apparent fluidity of the medium), on the basis of the last equation we reach the conclusion that Ag
is a linear function of In A7, Figures 2 and 3 show the experimental results of the author from the investiga-
tion of the flow of blood in steel pipes. In these experiments the fluid flows through straight horizontal cylin-
drical pipes of various diameters (3-7 mm) and lengths under the action of the pressure due to the pressure
tank in which the level is kept constant. By lateral spurs, manometers are connected to these pipes to mea-
sure the pressure difference between the ends of the section under investigation. The pressure drop is con-
trolled by a tap beyond the experimental section at the open end of the system. The fluid flow rate per sec-
ond was measured in the usual way. The experimental apparatus ensuring laminar flow with a fully devel-
oped velocity profile was tested with water,

The straight lines in Fig. 4 were obtained for blood of various concentrations from experimental re-
sults. Figures 5 and 6 show experimental results from the flows of other structured fluids: bitumen and a
solution of rubber and toluene [1]. Figures 2-6 show that the experimental results (circles) lie on straight
lines.

3. We introduce the following variables which define the hydraulic resistance of the motion of a fluid
with structured viscosity:
8(r,—1,) 8y — %)
pwpyt NT 7w
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11 where ) is the hydraulic resistance coefficient of the flow of a

K’ os o structured fluid at some average velocity ( w), and AN is the hy-

2 6.0—9’/‘ bn(keA) draulic resistance coefficient for a Newtonian fluid of fluidity ¢,
2.0 2 2.6 2 at the same flow velocity; 7y is the shear stress at the channel
Fig. 7 wall at which the average flow velocity of a Newtonian fluid with

fluidity ¢, is {w). We note that for the region of shear stress
under consideration, when we can neglect 7', the above defini-
tions of A and Ay coincide with the usual definitions.

We characterize the magnitude of the additional hydraulic losses due to the departure of the behavior
of a fluid with structured viscosity from the Newtonian in r <, by the relative resistance coefficient which

is defined by the equation
A= Ay

If the Reynolds number for a fluid with variable viscosity is defined as in [1], Re=2p (w) Roy, we
note that for given choice of A, ) and Ay are compared at the same Reynolds number.

It follows from the definition of the relative hydraulic resistance coefficient that

A T,—71,
A=—%N i (3.1)

We can define 7y~ 7¢' from the condition that the corresponding average velocities are equal
Yapy R (v — 1) = Yoy R (v, — 7,) [1 4958 (r,” —7.) In At]
Thus we have
T — T = (T, =T, ) [ B (r, — 1) In Ac (3.2)

It follows from this equation that as the shear stress increases, TN~ T¢ decreases and is zero when
T=7¢", at which value the relative hydraulic resistance coefficient A becomes unity.

Substituting (3.1) in (3.2) and introducing the concept of the relative hydraulic conductivity, ¢ =1/A, we
obtain

L=1+4%8(r," —7,)InAv _ (3.3)
Thus it follows that for a structured fluid there is a relation, similar to (1.1),
At = lnAt

between the relative hydraulic conductivity

and the nondimensional stress Ar.

The relative hydraulic conductivity coefficient y makes it possible for us to define the flow parameters
for a fluid with structured viscosity by calculating the corresponding quantities for Newtonian flow with con-
stant fluidity ¢, equal to the largest value of the fluidity for the structured medium under consideration for
given pressure gradient

9 =@ w=wsf BRe=Reyl

We use this equation to obtain an expression for the Reynolds number in terms of the hydraulic resist-
ance coefficient

Re = Rey { = VYap BP0, = alT,
Substituting this in (3.3), we obtain the corresponding resistance law for 7'~ 0)
1/A=AlnReA+B 3.4)

where

A=4,8", B=1— A4 1Inar”

610



Experimental results on the motion of blood in circular cylindrical channels are compared with Eq.
(3.4) in Fig. 7. The discontinuity in the straight line corresponds to the establishment of fluid flow condi-
tions at constant fluidity.

The author wishes to thank K. D. Voskresenskii and E. E, Kenig for direction and help with the paper.
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